headerphoto
Нефть и продукты её переработки

Нефть и продукты её переработки

Разведка нефти Цель нефтеразведки – выявление, геолого-экономическая оценка и подготовка к разработке залежей нефти.

Нефтеразведка производится с помощью геологических, геофизических, геохимических и буровых работ в рациональном сочетании и последовательности. На первой стадии поискового этапа в бассейнах с не установленной нефтегазоносностью либо для изучения слабо исследованных тектонических зон или нижних структурных этажей в бассейнах с установленной нефтегазоносностью проводятся региональные работы. Для этого осуществляются аэромагнитная, геологическая и гравиметрическая съемки, геохимические исследования вод и пород, профильное пересечение территории электро - и сейсморазведкой , бурение опорных и параметрических скважин. В результате устанавливаются районы для дальнейших поисковых работ. На второй стадии производится более детальное изучение нефтегазоносных зон путем детальной гравиразведки , структурно-геологической съемки, электро и сейсморазведки , структурного бурения.

Производится сравнение снимков масштабов 1:100.000 – 1:25.000. уточняется оценка прогнозов нефтегазоносности , а для структур с доказанной нефтегазоносностью , подсчитываются перспективные запасы. На третьей стадии производится бурение поисковых скважин с целью открытий месторождений.

Первые поисковые скважины бурятся на максимальную глубину.

Обычно первым разведуется верхний этаж, а затем более глубокие. В результате дается предварительная оценка запасов.

Разведывательный этап – завершающий в геологоразведочном процессе.

Основная цель – подготовка к разработке. В процессе разведки должны быть оконтурены залежи, определены литологический состав, мощность, нефтегазонасыщенность . По завершению разведочных работ подсчитываются запасы и даются рекомендации о вводе месторождения в разработку.

Эффективность поиска зависит от коэффициента открытий месторождений – отношением числа продуктивных площадей к общему числу разбуренных поисковым бурением площадей.

Добыча нефти Почти вся добываемая в мире нефть, извлекается посредством буровых скважин, закрепленных стальными трубами высокого давления. Для подъема нефти и сопутствующих ей газа и воды на поверхность скважина имеет герметичную систему подъемных труб, механизмов и арматуры, рассчитанную на работу с давлениями, соизмеримыми с пластовыми.

Добыче нефти при помощи буровых скважин предшествовали примитивные способы: сбор ее на поверхности водоемов, обработка песчаника или известняка, пропитанного нефтью, посредством колодцев. Сбор нефти с поверхности водоемов – это, очевидно, первый по времени появления способ добычи, который до нашей эры применялся в Мидии, Вавилонии и Сирии. Сбор нефти в России, с поверхности реки Ухты начат Ф.С. Прядуновым в 1745 г. В 1858 на полуострове Челекен нефть собирали в канавах, по которым вода стекала из озера. В канаве делали запруду из досок с проходом воды в нижней части: нефть накапливалась на поверхности.

Разработка песчаника или известняка, пропитанного нефтью, и извлечение из него нефти, впервые описаны итальянским ученым Ф. Ариосто в 15 веке.

Недалеко от Модены в Италии такие нефтесодержащие грунты измельчались и подогревались в котлах. Затем нефть выжимали в мешках при помощи пресса. В 1833 –1845 г.г. нефть добывали из песка на берегу Азовского моря. Песок помещали в ямы с покатым дном и поливали водой.

Вымытую из песка нефть собирали с поверхности воды пучками травы.

Добыча нефти из колодцев производилась в Киссии , древней области между Ассирией и Мидией в 5 веке до нашей эры при помощи коромысла, к которому привязывалось кожаное ведро.

Подробное описание колодезной добычи нефти в Баку дал немецкий натуралист Э. Кемпфер . Глубина колодцев достигала 27 м, их стенки обкладывались камнем или укреплялись деревом.

Добыча нефти посредством скважин начала широко применяться с 60-х г. 19 века.

Вначале наряду с открытыми фонтанами и сбором нефти в вырытые рядом со скважинами земляные амбары добыча нефти осуществлялась также с помощью цилиндрических ведер с клапаном в днище. Из механизированных способов эксплуатации впервые в 1865 в США была внедрена глубоконасосная эксплуатация, которую в 1874 г применили на нефтепромыслах в Грузии, в 1876 в Баку. В 1886 г В.Г. Шухов предложил компрессорную добычу нефти, которая была испытана в Баку в 1897г. Более совершенный способ подъема нефти из скважины – газлифт – предложил в 1914 г М.М. Тихвинский.

Процесс добычи нефти, начиная от притока ее по пласту к забоям скважин и до внешней перекачки товарной нефти с промысла, можно разделить условно на 3 этапа. Движение нефти по пласту к скважинам благодаря искусственно создаваемой разности давлений в пласте и на забоях скважин. Движение нефти от забоев скважин до их устьев на поверхности – эксплуатация нефтяных скважин. Сбор нефти и сопровождающих ее газа и воды на поверхности, их разделение, удаление минеральных солей из нефти, обработка пластовой воды, сбор попутного нефтяного газа. Под разработкой нефтяного месторождения понимается осуществление процесса перемещения жидкостей и газа в пластах к эксплуатационным скважинам.

Управление процессом движения жидкостей и газа достигается размещением на месторождении нефтяных, нагнетательных и контрольных скважин, количеством и порядком ввода их в эксплуатацию, режимом работы скважин и балансом пластовой энергии.

Принятая для конкретной залежи система разработки предопределяет технико-экономические показатели. Перед забуриванием залежи проводят проектирование системы разработки. На основании данных разведки и пробной эксплуатации устанавливают условия, при которых будет протекать эксплуатация: ее геологическое строение, коллекторские свойства пород (пористость, проницаемость, степень неоднородности), физические свойства жидкостей в пласте (вязкость, плотность), насыщенность пород нефти водой и газом, пластовые давления.

Базируясь на этих данных, производят экономическую оценку системы, и выбирают оптимальную. При глубоком залегании пластов для повышения нефтеотдачи в ряде случаев успешно применяется нагнетание в пласт газа с высоким давлением.

Извлечение нефти из скважин производится либо за счет естественного фонтанирования под действием пластовой энергии, либо путем использования одного из нескольких механизированных способов подъема жидкости.

Обычно в начальной стадии разработки действует фонтанная добыча, а по мере ослабления фонтанирования скважину переводят на механизированный способ: газлифтный или эрлифтный , глубинонасосный (с помощью штанговых, гидропоршневых и винтовых насосов). Газлифтный способ вносит существенные дополнения в обычную технологическую схему промысла, так как при нем необходима газлифтная компрессорная станция с газораспределителем и газосборными трубопроводами.

Нефтяным промыслом называется технологический комплекс, состоящий из скважин, трубопроводов, и установок различного назначения, с помощью которых на месторождении осуществляют извлечение нефти из недр Земли. На месторождениях, разрабатываемых с помощью искусственного заводнения , сооружают систему водоснабжения с насосными станциями. Воду берут из естественных водоемов с помощью водозаборных сооружений. В процессе добычи нефти важное место занимает внутрипромысловый транспорт продукции скважин, осуществляемый по трубопроводам.

Применяются 2 системы внутрипромыслового транспорта: напорные и самотечные. При напорных системах достаточно собственного давления на устье скважин. При самотечных движение происходит за счет превышения отметки устья скважины над пометкой группового сборного пункта. При разработке нефтяных месторождений, приуроченных к континентальным шельфам, создаются морские нефтепромыслы.

Физические свойства нефти Главнейшим свойством нефти, принесшим им мировую славу исключительных энергоносителей, является их способность выделять при сгорании значительное количество теплоты. Нефть и ее производные обладают наивысшей среди всех видов топлив теплотой сгорания.

Теплота сгорания нефти – 41 МДж /кг, бензина – 42 МДж /кг.

Важным показателем для нефти является температура кипения, которая зависит от строения входящих в состав нефти углеводородов и колеблется от 50 до 550°С. Нефть, как и любая жидкость, при определенной температуре закипает и переходит в газообразное состояние.

Различные компоненты нефти переходят в газообразное состояние при различной температуре. Так, температура кипения метана –161,5°С, этана –88°С, бутана 0,5°С, пентана 36,1°С. Легкие нефти кипят при 50–100°С, тяжелые – при температуре более 100°С. Различие температур кипения углеводородов используется для разделения нефти на температурные фракции. При нагревании нефти до 180–200°С выкипают углеводороды бензиновой фракции, при 200–250°С – лигроиновой , при 250–315°С – керосиново-газойлевой и при 315–350°С – масляной.

Остаток представлен гудроном. В состав бензиновой и лигроиновой фракций входят углеводороды, содержащие 6–10 атомов углерода.

Керосиновая фракция состоит из углеводородов с газойлевая – и т.д.

Важным является свойство нефти растворять углеводородные газы. В 1 м 3 нефти может раствориться до 400 м 3 горючих газов.

Большое значение имеет выяснение условий растворения нефти и природных газов в воде.

Нефтяные углеводороды растворяются в воде крайне незначительно. Нефти различаются по плотности.

Плотность нефти, измеренной при 20°С, отнесенной к плотности воды, измеренной при 4°С, называется относительной. Нефти с относительной плотностью 0,85 называются легкими, с относительной плотностью от 0,85 до 0,90 – средними, а с относительной плотностью свыше 0,90 – тяжелыми. В тяжелых нефтях содержатся в основном циклические углеводороды. Цвет нефти зависит от ее плотности: светлые нефти обладают меньшей плотностью, чем темные. А чем больше в нефти смол и асфальтенов , тем выше ее плотность. При добыче нефти важно знать ее вязкость.

Различают динамическую и кинематическую вязкость.

Динамической вязкостью называется внутреннее сопротивление отдельных частиц жидкости движению общего потока. У легких нефтей вязкость меньше, чем у тяжелых. При добыче и дальнейшей транспортировке тяжелые нефти подогревают.

Кинематической вязкостью называется отношение динамической вязкости к плотности среды.

Большое значение имеет знание поверхностного натяжения нефти. При соприкосновении нефти и воды между ними возникает поверхность типа упругой мембраны.

Капиллярные явления используются при добыче нефти. Силы взаимодействия воды с горной породой больше, чем у нефти.

Поэтому вода способна вытеснить нефть из мелких трещин в более крупные. Для увеличения нефтеотдачи пластов используются специальные поверхностно-активные вещества (ПАВ). Нефти имеют неодинаковые оптические свойства. Под действием ультрафиолетовых лучей нефть способна светиться. При этом легкие нефти светятся голубым светом, тяжелые – бурым и желто-бурым. Это используется при поиске нефти. Нефть является диэлектриком и имеет высокое удельное сопротивление. На этом основаны электрометрические методы установления в разрезе, вскрытом буровой скважиной, нефтеносных пластов.

Химические элементы и соединения в нефти Нефти состоят главным образом из углерода – 79,5 – 87,5 % и водорода – 11,0 – 14,5 % от массы нефти. Кроме них в нефти присутствуют еще три элемента – сера, кислород и азот. Их общее количество обычно составляет 0,5 – 8 %. В незначительных концентрациях в нефти встречаются элементы: ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец, хром, кобальт, молибден, бор, мышьяк, калий и др. Их общее содержание не превышает 0,02 – 0,03 % от массы нефти.

Указанные элементы образуют органические и неорганические соединения, из которых состоят нефти.

Кислород и азот находятся в нефти только в связанном состоянии. Сера может встречаться в свободном состоянии или входить в состав сероводорода.

Продукты, получаемые из нефти, их применение Из нефти выделяют разнообразные продукты, имеющие большое практическое значение.

Вначале от нее отделяют растворенные углеводороды (преимущественно метан). После отгонки летучих углеводородов нефть нагревают.

Первыми переходят в газообразное состояние и отгоняются углеводороды с небольшим числом атомов углерода в молекуле, имеющие относительно низкую температуру кипения. С повышением температуры смеси перегоняются углеводороды с более высокой температурой кипения. Таким образом можно собрать отдельные смеси (фракции) нефти. Чаще всего при такой перегонке получают три основные фракции, которые затем подвергаются дальнейшему разделению.

Основные фракции нефти следующие: 1. 0 до 200 0 С, - газолиновая фракция бензинов – содержит углеводороды от С 5 Н 12 до С 11 Н 24 . При дальнейшей перегонке выделенной фракции получают: газолин (от 40 0 до 70 0 С), бензин (от 70 0 до 120 0 С) – авиационный, автомобильный и т.д. 2. Лигроиновая фракция, собираемая в пределах от 150 0 до 250 0 С, содержит углеводороды от С 8 Н 18 до С 14 Н 30 . Лигроин применяется как горючее для тракторов. 3. Керосиновая фракция включает углеводороды от С 12 Н 26 до С 18 Н 38 с температурой кипения от 180 0 до 300 0 С. керосин после очистки используется в качестве горючего для тракторов, реактивных самолетов и ракет. 4. Газойль (выше 275 0 С) – дизельное топливо. 5. Мазут – остаток от перегонки.

Содержит углеводороды с большим числом атомов углерода (до многих десятков) в молекуле. Мазут также разделяют на фракции: a) Соляровые масла – дизельное топливо, b) Смазочные масла ( авиатракторные , авиационные, индустриальные и др.), c) Вазелин (основа для косметических средств и лекарств). И др. Из некоторых сортов нефти получают парафин (для производства спичек, свечей и др.). После отгонки остается гудрон. Его широко применяют в дорожном строительстве.


Подобные работы

Нефть и продукты её переработки

echo "Разведка нефти Цель нефтеразведки – выявление, геолого-экономическая оценка и подготовка к разработке залежей нефти. Нефтеразведка производится с помощью геологических, геофизических, геохимиче

Природный газ

echo "Многие месторождения Г. п. г., залегающие на глубине не более 1,5 км, состоят почти из одного метана с небольшими примесями его гомологов (этапа, пропана, бутана), азота, аргона, иногда углекисл

Обработка каучука и производство резины

echo "Использование грануляторов – машин, которые разрезают каучук на маленькие гранулы или пластинки одинаковых размеров и формы, – облегчает операции по дозировке и управлению процессом обработки ка

Лекарственные препараты

echo "Структура. Отдельные представители. PAGEREF _Toc3582793 h 4 Антибиотики . PAGEREF _Toc3582794 h 4 Тетрациклины. Структура . PAGEREF _Toc3582795 h 6 Отдельные представители: PAGEREF _Toc3582796

Ректификационная установка непрерывного действия для разделения 4,1 т/ч бинарной смеси ацетон - этанол

echo "Большинство рекомендаций сводится к использованию для расчета ректификационных колонн кинетических зависимостей, по л у ченных при исследовании абсорбционных процессов (в приведенных в данной гл

Вода и её свойства

echo "Молекулы воды обнаружены в межзвёздном пространстве. Вода входит в состав комет, большинства планет солнечной системы и их спутников. Изотопный состав. Существуют девять устойчивых изотопных р

Медицина и полимеры

echo "Сейчас уже не редкость, когда человеку в случае необходимости восполняют до 30% крови растворами медицинских сополимеров. Синтезированы и с хорошими результатами применяются в клинической практ

Татарстан - республика химии

echo "Учитывая первые две продукта, понятно, почему развитие химии в Татарстане так велико. Суммарно за весь период добычи из недр Татарстана извлечено 2,6 млрд. т. Это соответствует примерно 1/4 все